GCE MARKING SCHEME

CHEMISTRY
 AS/Advanced

SUMMER 2010

CH5

SECTION A

1. (a) (i) $\Delta H^{\ominus}=-393.5-601.7+1095.8=+100.6 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 1$ mark
(ii) The entropy increases because a gas is formed by the reaction and gases have higher entropies than solids.

1 mark
(iii) $\Delta S^{\ominus}=0.1748 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$

1 mark
(iv) $\Delta G=\Delta H^{\ominus}-\mathrm{T} \Delta S^{\ominus} \quad 1$ mark $\Delta G=0 \quad 1$ mark $\mathrm{T}=100.6 / 0.1748=576 \mathrm{~K} \quad 1$ mark (mark consequentially if ΔH^{\ominus} or ΔS^{\ominus} incorrect) (3 marks for correct answer with no / incomplete working shown)
(b) Sodium carbonate soluble as ΔG negative (spontaneous reaction), 1 mark magnesium carbonate sparingly soluble / insoluble as ΔG positive. 1 mark or
Sodium carbonate more soluble than magnesium carbonate,
ΔG for sodium carbonate more negative than ΔG for magnesium carbonate.
(c) (i) $\left[\mathrm{Mg}^{2+}(\mathrm{aq})\right]=\left[\mathrm{CO}_{3}{ }^{2-}(\mathrm{aq})\right]=3.16 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3} \quad 1$ mark
(ii) $\mathrm{K}_{\mathrm{c}}=\left[3.16 \times 10^{-3}\right]^{2}=1.0 \times 10^{-5} \mathrm{~mol}^{2} \mathrm{dm}^{-6} \quad 1$ mark
(iii) Yes, they are consistent, because as ΔG was positive (and the reaction would not occur spontaneously), K_{c} must have a very small value. 1 mark
(iv) Adding extra carbonate ions would push the equilibrium to the left, decreasing the solubility.

1 mark
2. (a) (i) $K_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$

$$
1 \text { mark }
$$

(ii) Equilibrium constant increases with temperature, so must be an endothermic process.

1 mark [1]
(iii) $K_{\mathrm{w}}=4.3 \times 10^{-14}\left(\mathrm{~mol}^{2} \mathrm{dm}^{-6}\right)$

1 mark
(iv) $\left[\mathrm{H}^{+}\right]=\sqrt{4.3} \times 10^{-14}=2.07 \times 10^{-7} \mathrm{~mol} \mathrm{dm}^{-3}$

1 mark
(allow 2.1 but not 2)
$\mathrm{pH}=-\log \left(2.07 \times 10^{-7}\right)=6.7$
1 mark
(Mark consequentially if K_{w} or $\left[\mathrm{H}^{+}\right]$are incorrect)
(b) (i) End point $=20.0 \mathrm{~cm}^{3}$ (allow $20 \mathrm{~cm}^{3}$) 1 mark
$\left[\mathrm{NH}_{3}\right] \times 25.0=0.100 \times 20.0 \quad 1$ mark for setting up equation
$\left[\mathrm{NH}_{3}\right]=0.080 \mathrm{~mol} \mathrm{dm}{ }^{-3} \quad 1$ mark (must be two significant figures)
(ii) $\mathrm{NH}_{4}^{+} \rightleftharpoons \mathrm{NH}_{3}+\mathrm{H}^{+} /$conjugate acid and base mixture 1 mark NH_{3} reacts with added acid to form $\mathrm{NH}_{4}{ }^{+} \quad 1$ mark
NH_{4}^{+}dissociates as H^{+}reacts with added alkali 1 mark
(iii) Methyl red

1 mark
(any additional indicators treated as right / wrong)
pH range lies on the steep part of the curve
1 mark
3. (a) Any 2×1 mark for

A salt bridge:
completes the circuit between the electrode solutions
allows movement of ions
without any mixing of the solutions
(b) (i) Used as a standard / defined as zero (in standard hydrogen electrode).

1 mark [1]
(ii) $\mathrm{EMF}=1.23-0=1.23 \mathrm{~V}$

1 mark [1]
(iii) Not operated under standard conditions /

Process not 100% efficient /
Energy lost as heat
1 mark [1]
(iv) $2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

1 mark [1]
(v) Dependent on the equation used
$\Delta H^{\ominus}=-571.6$ or $-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1} \quad 1$ mark [1]
(c) (i) It is difficult to store enough hydrogen onboard

1 mark [1]
(ii) Risk of hydrogen exploding in air

1 mark [1]
(iii) Products are not polluting /

No CO_{2} greenhouse gas produced $/ \mathrm{H}_{2}$ available from renewable sources

1 mark [1]
(d) (i) Mass $=(30 / 100) \times 1000=300 \mathrm{~g}$

1 mark
No moles $\mathrm{NaBH}_{4}=300 / 37.84=7.93$ moles $\quad 1$ mark
(ii) Energy $=7.93 \times 300=2379 \mathrm{~kJ}$

1 mark
(Mark consequentially on the no moles in (i))
$\begin{array}{ll}\text { (iii) } & 7.93 \times 4=31.72 \mathrm{~mol} \mathrm{H}_{2} \text { gas } \\ & 1 \text { mark } \\ & \\ \text { Volume }=31.72 \times 24=761.2 \mathrm{dm}^{3} & 1 \text { mark } \\ & \text { [2] }\end{array}$
Total [15]

SECTION B

4. (a) (i) Rate $=0.0020 / 17.5=1.14 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~min}^{-1}$
(or $1.90 \times 10^{-6} \mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}$) Value 1 mark, units 1 mark
(ii) Follow the decrease in brown colour due to the Br_{2}
/ use a colorimeter 1 mark
Reference to the measurement of time 1 mark
(iii) $\operatorname{Br}_{2}(\mathrm{aq})$ zero order 1 mark
$\mathrm{CH}_{3} \mathrm{COCH}_{3}(\mathrm{aq})$ first order 1 mark
(iv) I As the pH increases the rate of reaction decreases 1 mark

II When pH increases by one unit, $\left[\mathrm{H}^{+}\right]$decreases by a factor of ten, as
does the rate, so must be first order (or equivalent statement)
1 mark
III A catalyst (as more H^{+}speeds the reaction up without being in the
equation)
1 mark
IV Rate $=\mathrm{k}\left[\mathrm{CH}_{3} \mathrm{COCH}_{3}\right]\left[\mathrm{H}^{+}\right] \quad 1$ mark Units of k are $\mathrm{mol}^{-1} \mathrm{dm}^{+3} \mathrm{~min}^{-1} \quad 1$ mark (Mark units for k consequentially if rate equation incorrect)
(QWC)(iv) A coherent and clearly expressed response using a style appropriate to complex subject matter.
(b) BN and C can both adopt the same hexagonal structure:

BN and C are isoelectronic (or equivalent statement) 1 mark
(All three) can form three (trigonal) bonds with one unbonded
p-orbital 1 mark
(Allow appropriate diagram(s))
Both BN and C exhibit lubricating properties:
Both BN and C have a layer structure 1 mark
Weak van der Waals forces between layers allow slippage of the layers

1 mark
C is an electrical conductor but BN is an insulator at room temperature:
Any two from:
In C, delocalisation of electrons (between the unbonded p-orbitals) allows conduction of electricity.

1 mark
Unlike C , in BN each N has a full unbonded p-orbital whereas each B has an empty unbonded p-orbital. 1 mark In BN, N is more electronegative than B , so electron density not evenly spread.

1 mark
(QWC)(b) Legible text and accurate spelling, punctuation and grammar so that meaning is clear 1 mark Information organised clearly and coherently, using specialist vocabulary when appropriate.

1 mark [2]
Total [20]
5. (a) (i) Blue 1 mark precipitate 1 mark
(ii) $\mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}$
or $\mathrm{CuSO}_{4}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\mathrm{CaSO}_{4} \quad 1$ mark
(b) (i) Starch 1 mark Blue to colourless 1 mark
(ii) No moles $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}=12.25 \times 0.100 / 1000=1.225 \times 10^{-3} \quad 1$ mark

Mass $\mathrm{Cu}=1.225 \times 10^{-3} \times 63.5=0.0778 \mathrm{~g} \quad 1$ mark $\% \mathrm{Cu}=0.0778 \times 100 / 31.2=0.249 \% \quad 1$ mark
(deduct 1 mark if both second and third answers not to 3 significant figures)
(c)
(i) $\mathrm{Cu}^{2+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{9} \quad 1$ mark
$\mathrm{Cu}^{+} 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} \quad 1$ mark
(ii) 3d orbitals split (by water ligands)

1 mark
(In an approximately octahedral field) three d-orbitals have lower energy, two have higher energy 1 mark
Electrons absorb (visible light) energy to jump from lower level to higher level 1 mark
The blue colour is that due to the remaining / non-absorbed frequencies
1 mark
(Appropriate diagrams are acceptable alternatives).
(iii) Colour arises from d-d electron transitions, not possible in Cu^{+}because the 3 d subshell is full.
(d) (i) CCl_{4} forms two layers / does not mix with water / no reaction 1 mark SiCl_{4} reacts explosively / exothermically
or
misty fumes / sharp smelling fumes / acid solution / white ppt. 1 mark
$\mathrm{SiCl}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{SiO}_{2}+4 \mathrm{HCl} \quad 1$ mark
(Allow $\mathrm{Si}(\mathrm{OH})_{4}$)
(ii) In PbCl_{2} the Pb^{2+} ion is stabilised due to the inert pair $\left(\mathrm{ns}^{2}\right)$ effect

1 mark for any one of the following
CCl_{2} and SiCl_{2} are too unstable to exist because:
oxidation state IV is more stable than oxidation state II at the top of the group
or oxidation state II increases in stability down the group or covalent bonding is more stable than ionic at the top of the group and four bonds are needed for an outer octet .
or insert pair effect becomes more significant down the group

